18 may 2016

Escritor disléxico escribe un libro

Con autorización de la autora, Ana Olea, alumna del Centro Educativo Emmanuel Mounier, reproducimos su artículo, publicado en la revista digital Actual.

Escritor disléxico escribe un libro


¿Quién diría que un disléxico pudiera escribir?
Olivier Bourdeaut, escribe una historia tan conmovedora, a sus 35 años de edad en Francés. A Bourdeaut le llevó únicamente dos semanas y lo hizo encerrado en casa de sus padres que viven en
Él se sentía la oveja negra de su familia, ya que era el único que no podía con la escuela, se sentía extraño hasta en su propia casa. Siendo disléxico, al igual que todos, es normal que él tenga muchos problemas para leer y escribir, así como con los números. 
Antes de escribir su libro En attendat Bolangeles en español Esperando a Bolangeles, se ha convertido en un fenómeno literario en Francia, tanto que se están realizando traducciones de 13 lenguas diferentes incluido el español. Este es su primer éxito. 
Una de las razones la cual esta obra a tenido tanto éxito es porque Bourdeaut,  nos puede matar de risa y al mismo tiempo hacerte sentir triste. Se publicó en 2014 por la editorial Finitude, narra desde el punto de vista de un hijo, la vida de una pareja bohemia.  
Para todo escritor es difícil la ortografía, pero es todavía más duro para un disléxico, como lo fue para Olivier Bourdeaut.
Es una gran inspiración para todo los escritores, pues sabemos que le costó mucho trabajo sacar su primer libro.
Podemos estar seguros que esta obra será un gran éxito merecido. Esperemos que lo volvamos a ver con otra obra, pero por ahora sólo nos queda esperar a que este gran libro llegue a las manos de los mexicanos.
http://revistaactual.com.mx/escritos-dislexico-escribe-un-libro-exitos/

12 may 2016

Isaac Newton



Isaac Newton

1Cuenta la leyenda que en 1666, cuando Isaac Newton contaba veintitrés años, vio caer una manzana de un árbol. No era la primera vez que lo veía, ni él ni muchas otras personas, por supuesto. Pero esa vez Newton miró hacia arriba: sobre la campiña inglesa, en medio del cielo diurno, se divisaba una media luna muy tenue. Newton se preguntó: ¿por qué la Luna no cae, igual que la manzana, hacia la Tierra, atraída por la fuerza de la gravedad?

2Su razonamiento fue el siguiente: puede ser que la Luna sea atraída efectivamente por la Tierra, pero que la velocidad de su movimiento a través del espacio contrarreste la atracción de la gravedad terrestre. Además, si la fuerza que tira de la manzana hacia la tierra también tira de la Luna hacia esta, esa fuerza tiene que extenderse muy lejos por el espacio; y a medida que se extienda por el espacio, tiene que hacerse cada vez más débil.

3Newton calculó la distancia de la Luna al centro de la Tierra y luego la velocidad que tendría que llevar la Luna en su órbita para equilibrar la atracción de la gravedad terrestre a esa distancia de la Tierra. La solución que encontró cuadraba muy bien con las cifras halladas por los astrónomos para la velocidad de la Luna; pero no coincidían exactamente. Newton pensó que la teoría era falsa y la desechó. 

4Por aquel entonces Newton empezaba ya a destacar en las matemáticas, pese a que en la escuela había mostrado escasas dotes. Nació el día de Navidad de 1642 (el mismo año que murió Galileo), en Woolsthorpe, Inglaterra. Su padre, que fue granjero, había muerto el día antes de nacer Isaac. De pequeño fue Newton un estudiante poco aventajado, hasta el día (cuenta la leyenda) en que se cansó de que le ganara el primero de la clase; entonces se aplicó hasta que consiguió desbancarle.

5A los dieciocho años empezó a llamar la atención su interés por las matemáticas. Mal granjero va a ser, dijo su tío, y convenció a la madre para que le enviara a la Universidad de Cambridge. Nueve años más tarde era profesor de matemáticas allí.

6¡Pero qué años fueron esos para Newton! Una de las cosas que estudió fueron los rayos luminosos. Dejaba que la luz del sol entrara en una habitación oscura a través de un orificio practicado en la cortina; el diminuto rayo de luz pasaba luego por un prisma de vidrio triangular; y he aquí que la luz que caía luego sobre una pantalla aparecía en forma de arcoíris, no en forma de punto luminoso. Newton fue el primero en descubrir que la luz blanca está compuesta de varios colores que pueden separarse y recombinarse.

7Por aquella misma época estableció nuevas fronteras en el campo de las matemáticas. Aparte de hallar el teorema del binomio para expresar ciertas magnitudes algebraicas, descubrió una cosa mucho más importante: una manera nueva de calcular áreas limitadas por curvas. (El matemático alemán Wilhelm Leibniz descubrió lo mismo casi simultáneamente y de forma independiente). Newton llamó «fluxiones» a su nueva técnica. Nosotros lo llamamos «cálculo diferencial».

8Incluso los errores de Newton reportaron resultados fructíferos. Newton había elaborado una teoría para explicar su descubrimiento de que la luz blanca se refractaba en el vidrio, formando un arcoíris. La teoría era errónea, como comprobaron después los científicos, pero parecía explicar por qué los primeros telescopios, que estaban construidos con lentes que refractaban la luz, formaban imágenes rodeadas de pequeños halos de colores. A este fenómeno se le dio el nombre de «aberración cromática». La teoría de Newton —que era falsa, como ya dijimos— le indujo a creer que la aberración cromática jamás podría corregirse.

9Por ese motivo decidió construir telescopios sin lentes, sustituyendo estas por espejos parabólicos que recogieran y concentraran la luz por reflexión. El primero lo construyó en 1668. Como es natural, los telescopios reflectores no tenían aberración cromática.

10Poco después de morir Newton se construyeron telescopios con lentes especiales que carecían de aberración cromática. Pero lo cierto es que los mayores y mejores telescopios siguen utilizando hoy en día el principio reflector. El de 200 pulgadas de Monte Palomar, en California, es un telescopio reflector.

11Así y todo, el intento de Newton de aplicar la gravedad terrestre a la Luna seguía siendo un fracaso. Pasaban los años y parecía que su muerte era definitiva.

12Uno de los defectos de Newton era que no sabía encajar las críticas, lo cual le valió muchas querellas a lo largo de su vida. Una de ellas fue la polémica que sostuvieron Newton y sus seguidores con Leibniz y los suyos acerca de quién había inventado el cálculo, cuando lo cierto es que ambos merecían ese honor.

13El gran enemigo de Newton dentro de la Royal Society (de la que era miembro) era Robert Hooke. Hooke era un científico muy capaz, pero muy poco constante. Empezaba una cosa y la dejaba, y empezó tantas a lo largo de su vida, que hiciesen lo que hiciesen los demás siempre podía decir que a él se le había ocurrido primero.

14Hooke, junto con Edmund Halley, muy buen amigo de Newton, se jactó en 1684 de haber hallado las leyes que explican la fuerza que rige los movimientos de los cuerpos celestes. La teoría no parecía satisfactoria… y se desató la polémica.

15Halley acudió a Newton y le preguntó cómo se moverían los planetas si entre ellos existiese una fuerza de atracción que disminuyera con el cuadrado de la distancia.
Newton contestó inmediatamente:
—En elipses.
—Pero ¿cómo lo sabes?
—Pues porque lo he calculado.
Y le contó a su amigo la historia de su intento de hacía dieciocho años y cómo había fracasado. Halley, excitadísimo, le instó a que volviera a intentarlo.

16Las cosas eran ahora diferentes. Newton había supuesto, en 1666, que la fuerza de atracción actuaba desde el centro de la Tierra, pero sin poder probarlo. Ahora tenía la herramienta del cálculo diferencial. Con sus nuevas técnicas matemáticas podía demostrar que la fuerza actuaba desde el centro. Por otra parte, durante los últimos dieciocho años se habían obtenido nuevas y mejores mediciones del radio de la Tierra, así como del tamaño de la Luna y de su distancia a nuestro planeta.

17La teoría de Newton encajaba esta vez perfectamente con los hechos. La Luna era atraída por la Tierra y retenida por ella a través de la gravedad, igual que la manzana.

18Newton expuso en 1687 su teoría en un libro titulado Philosophiae Naturalis Principia Mathematica, en el cual enunció también las «Tres Leyes del Movimiento». La tercera de ellas afirma que para toda acción hay una reacción igual y contraria. Es el principio que explica el funcionamiento de los cohetes.

19La Royal Society intentó publicar el libro, pero no había dinero bastante en tesorería. Hooke, por su lado, armó toda la gresca que pudo e insistió en que la idea era suya. Halley, que disfrutaba de una posición desahogada, corrió con los gastos de publicación.

20Pero los días grandiosos pasaron, y en 1692 empezó a fallar esa mente omnicomprensiva. Newton sufrió una crisis nerviosa y vivió retirado durante casi dos años. Para quemar sus inagotables energías mentales se dedicó a la teología y a la alquimia, como si la ciencia no le bastara. De este modo malgastó sus luces en la búsqueda de algún modo de fabricar oro.

21Aunque jamás volvió a ser el mismo después de esa crisis nerviosa, siguió dando muestras de su antigua genialidad. Así, por ejemplo, en 1696, cuando un matemático suizo retó a los sabios de Europa a resolver dos problemas, Newton los vio y al día siguiente envió anónimamente las soluciones. El matemático suizo vislumbró inmediatamente quién se ocultaba tras la máscara: «Reconozco la zarpa del león».

22Newton fue nombrado inspector de la Casa de la Moneda en 1696, encargándosele la acuñación de moneda. Renunció a su puesto docente y desempeñó con tanto celo su nuevo empleo que se convirtió en el terror de los falsificadores.

23Formó también parte del Parlamento durante dos períodos, elegido en representación de la Universidad de Cambridge. Jamás pronunció un discurso. En cierta ocasión se levantó y la sala se sumió en un silencio sepulcral para escuchar al gran hombre. Lo único que dijo Newton fue que cerraran por favor la ventana, que había corriente.

24La reina Ana le otorgó en 1705 el título de caballero. El 20 de marzo de 1727, cuarenta años después de sus grandes descubrimientos, murió.

25La importancia de Newton, sin embargo, no se debe sólo a esos grandes descubrimientos. Es cierto que sus leyes del movimiento completaron la obra iniciada por Galileo y que sus leyes de la gravedad universal explicaron la labor de Copérnico y Kepler así como el movimiento de las mareas. Son sin duda conceptos muy importantes que aparecen hoy en cualquier rama de la mecánica. Fundó la ciencia de la óptica, que nos ha permitido saber todo lo que sabemos acerca de la composición de las estrellas y casi todo lo que conocemos sobre la composición de la materia. Y el valor del cálculo diferencial e integral en cualquier rama de la ciencia es inapreciable.

26Con todo, la máxima importancia de Newton para el avance de la ciencia puede que sea de orden psicológico. La reputación de los antiguos filósofos y sabios griegos se había resquebrajado malamente con los descubrimientos hechos por figuras modernas como Galileo y Harvey. Pero aun así los científicos europeos seguían teniendo una especie de sentimiento de inferioridad.

27Entonces llegó Newton. Sus teorías gravitatorias inauguraron una visión del universo que era más grande y más grandiosa que lo que Aristóteles hubiese podido soñar. Su elegante sistema de la mecánica celeste puso los cielos al alcance de la inteligencia del hombre y demostró que los cuerpos celestes más remotos obedecían exactamente las mismas leyes que el objeto mundano más pequeño.

28Sus teorías se convirtieron en modelos de lo que debía ser una teoría científica. Desde Newton, los autores y pensadores de todas las demás ciencias, y también de la filosofía política y moral, han intentado emular su elegante sencillez, utilizando fórmulas rigurosas y un número pequeño de principios básicos.

29Aquella mente era tan portentosa como la de cualquiera de los antiguos. Sus contemporáneos lo sabían y casi le idolatraban. A su muerte le enterraron en la abadía de Westminster, junto a los héroes de Inglaterra. El francés Voltaire, que se hallaba visitando Inglaterra por aquella época, comentó con admiración que ese país honraba a un matemático como otras naciones honraban a sus reyes. Desde los días de Newton, la ciencia ha tenido una confianza en sí misma que jamás ha vuelto a decaer.
La gloria de Newton ha quedado recogida de forma insuperable en los versos de Alexander Pope:
"La Naturaleza y sus leyes yacían ocultas en la noche.
Dijo Dios, ¡Sea Newton! y todo se hizo luz.”

Título original: Breakthroughs in Science
Isaac Asimov, 1959
Traducción: Miguel Paredes Larrucea
Diseño de portada: Daruma
Editor digital: Daruma”
Fragmento de: Isaac Asimov. “Momentos estelares de la ciencia”. iBooks. 

William Harvey


William Harvey
                    

1William Harvey había observado pacientemente la acción del corazón y de la sangre. A cada contracción el corazón bombeaba cierta cantidad de sangre en las arterias. Al cabo de una hora había bombeado una cantidad que pesaba tres veces más que un hombre. ¿De dónde venía toda esa sangre? ¿A dónde iba? ¿Venía de la nada? ¿Se desvanecía en la nada?

2A Harvey sólo se le ocurría una respuesta: la sangre que salía del corazón tenía que volver a él. La sangre tenía que circular por el cuerpo.

3William Harvey nació el 1 de abril de 1578 en Folkestone, Inglaterra. Estudió en Cambridge, luego en Padua, Italia, que por aquel entonces era el centro del saber médico. Obtuvo su título de doctor en 1602 y fue médico de cámara de Jacobo I, y luego de Carlos I.

4Su vida privada transcurrió sin grandes sobresaltos porque, aunque vivió en una época en que Inglaterra sufría los trastornos políticos de una guerra civil, Harvey nunca mostró interés por la política. La afición que le absorbía era la investigación médica.

5Galeno, el gran médico griego del siglo III d. C., pensaba que la sangre iba y venía suavemente por las arterias y pasaba a través de orificios invisibles en la pared que dividía el corazón en dos mitades. La sangre iba primero en una dirección, luego en la  contraria. La teoría de Galeno subsistió durante mil cuatrocientos años.



6En tiempos de Harvey hubo muchos doctores que especularon acerca del movimiento de la sangre. Harvey, por el contrario, buscó dentro del cuerpo las claves que explicaban el misterio, siguiendo en esto los pasos de Andreas Vesalius, un gran médico belga que había enseñado en Padua una generación antes de que Harvey estudiara allí. Vesalio, que fue el primero en diseccionar cuerpos humanos, fue el padre de la anatomía.

7Harvey estudió el corazón en animales vivos y observó que las dos mitades no se contraían al mismo tiempo. Estudió las válvulas que se hallan entre los ventrículos y las aurículas (las pequeñas cámaras del corazón) y advirtió que eran válvulas unidireccionales. Estudió las válvulas de las venas y halló que también eran de una sola dirección; estas últimas las había descubierto el profesor de Harvey en Padua, un médico llamado Fabricius quien, sin embargo, no había comprendido su función.

8Era claro que la sangre podía salir del corazón por las arterias y entrar en él a través de las venas. Las válvulas impedían que el movimiento se invirtiera.

9Harvey ligó diversas arterias y observó que sólo se hinchaban del lado del corazón. Luego hizo lo propio con venas: la presión crecía del lado opuesto al del corazón. En 1616 estaba seguro de que la sangre circulaba.

10La teoría sólo tenía una pega, y es que no había conexiones visibles entre arterias y venas. ¿Cómo pasaba la sangre de unas a otras? El sistema arterial era como un árbol en el que las ramas se dividen en ramitas cada vez más pequeñas. Cerca del punto donde las arterias parecían terminar surgían venas minúsculas que luego se hacían cada vez más grandes; pero no había ninguna conexión visible entre ambas.

11Pese a esa laguna, Harvey dio por buena su teoría en 1628. Publicó un libro de 52 páginas con un largo título en latín, que se conoce generalmente con el nombre de De Motus Cordis («Sobre el movimiento del corazón»); fue impreso en un papel muy delgado y barato y contenía cantidad de erratas tipográficas; pero aun así derrocó la teoría de Galeno.


12Los resultados no fueron al principio muy halagüeños para Harvey: disminuyó su clientela, sus enemigos se rieron de él y los pacientes no querían ponerse en manos de un excéntrico. Se le puso el mote de circulator, pero no porque creyera en la circulación de la sangre, sino porque en el latín coloquial significaba «charlatán», nombre que se les daba a los vendedores ambulantes que ofrecían ungüentos en el circo.

13Harvey guardó silencio y prosiguió con su trabajo; sabía que al final le darían la razón.

14Y así fue. La prueba final vino en 1661, cuatro años después de morir Harvey. El médico italiano Marcello Malpighi examinó tejido vivo al microscopio y encontró diminutos vasos sanguíneos que conectaban las arterias y venas en los pulmones de una rana. Los llamó capilares («como cabellos») por sus pequeñísimas dimensiones. La teoría de la circulación estaba completa.

15La importancia del trabajo de Harvey reside en los métodos que utilizó. Harvey suplió la «autoridad» con la observación y escrutó la naturaleza en lugar de hojear viejos manuscritos polvorientos. A partir de allí creció el monumental edificio de las ciencias de la vida que hoy conocemos.
Título original: Breakthroughs in Science
Isaac Asimov, 1959
Traducción: Miguel Paredes Larrucea
Diseño de portada: Daruma
Editor digital: Daruma
Fragmento de: Isaac Asimov. “Momentos estelares de la ciencia”. iBooks.